
All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 11

CMSC 426

Principles of Computer Security

Overflow Attack Basics

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 2

Last Class We Covered

 Security Standards

 Standards Bodies

 Security Principles

 Security Strategy

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 3

Any Questions from Last Time?

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 4

Today’s Topics

 Buffer overflow basics

 How the stack works

 Overflowing the stack buffer

 Example in action

 Vulnerable code

 Finding vulnerable code

 Avoiding vulnerable code

 Exploiting stack overflows

 Shellcode

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 5

Buffer Overflows

 Programs constantly write data to areas of memory (buffers)

 Higher level languages (Java, Python, etc.) do a lot of user hand-

holding and won’t allow unsafe use of the language

 Lower level languages (C, etc.) do a minimal amount of checking,

and assume that the programmer knows what they’re doing

 When a buffer has data written to it that exceeds

the size of the buffer, a buffer overflow occurs

 The excess data continues to write, overflowing into

nearby variables and other areas of memory

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 6

Stacks, Heaps, and More

 Processes get their own

address space when run

 Address space is divided

into smaller pieces, each

with a specific purpose

 Stack grows “down” to

lower addresses

Stack

Heap

Global/Static Vars

Code/Text

0xFFFFFF

0x000000

address
space

Function calls,
locals

Dynamically
allocated
memory

“data segment”

“code segment”

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 7

Stack Allocation

 Memory allocated by the program as it runs

 Local variables

 Function calls

 Parameters passed

 Function-local variables

 Return addresses

 (Somewhat) fixed at compile time

Stack

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 8

Heap Allocation

 Dynamically allocated memory

 Memory explicitly allocated by the user

 Using malloc(), calloc(), new, etc.

 Creation and deletion (freeing) is

controlled by the user

 Not determined at compile time

Heap

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 9

Stack Overflow Example

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 10

Stack Overflow Example Code

 Relevant code snippet:
int main()

{

char first[5];

char name[15];

printf("Please enter a name: ");

gets(name);

printf("\nfirst: %s\n", first);

printf("You entered the name %s\n", name);

return 0;

}

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 11

Stack Overflow Example Run
linuxserver1[7]% ./a.out

Please enter a name: Gibson

first:

You entered the name Gibson

linuxserver1[8]% ./a.out

Please enter a name: Dr. Katherine L. Gibson

first: . Gibson

You entered the name Dr. Katherine L. Gibson

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 12

Stack Overflow Example Compile
linuxserver1[13]% gcc overflow.c

overflow.c: In function ‘main’:

overflow.c:16:3: warning: implicit declaration of function ‘gets’;

did you mean ‘fgets’? [-Wimplicit-function-declaration]

gets(name);

^~~~

fgets

/tmp/ccncipQo.o: In function `main':

overflow.c:(.text+0x3e): warning: the `gets' function is dangerous

and should not be used.

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 13

Overflowing the Stack Buffer

 Requires the use of a lower-level language (like C) that will

allow the use of unsafe functions and methods

 Like strcpy() or gets()

 End goal is to use the overflow to overwrite important things

 Return addresses

 Function parameters

 “Normal” memory with code supplied by the attacker

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 14

Another Stack Overflow Example Run
linuxserver1[15]% ./a.out

Please enter a name: Dr. Katherine Gibson is teaching this course with a very long

title - CMSC 426: Principles of Computer Security

first: ibson is teaching this course with a very long title - CMSC 426: Principles of

Computer Security

You entered the name Dr. Katherine Gibson is teaching this course with a very long

title - CMSC 426: Principles of Computer Security

Segmentation fault (core dumped)

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 15

Segmentation Faults

 Happens when memory is written to that should not be

 Or when memory that is accessed should not be

 Not 100% consistent – sometimes C/C++ will let you

“get away” with accessing or writing to memory that

doesn’t “belong” to you/the program

 The more you mess up, the more likely it will be caught

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 16

Vulnerable Code

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 17

Finding Vulnerable Code

 Easiest way: inspect source code of programs

 Trace the execution of programs as they process oversized

input

 Brute forcing or “fuzzing” a program with large inputs to see if

errors arise

Information taken from Computer Security (Stallings & Brown)

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 18

Avoiding Vulnerable Code

 Ensure that buffers only take in the amount of data they can

actually hold

 Enforce size limits on inputs from users and files

 Use a higher-level language when needed

 Don’t use bad, outdated functions!

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 19

Unsafe Functions and Alternatives

 Set a maximum size/number of characters to handle at once

Unsafe Safe Description

gets() fgets() Read characters from a stream

strcpy() strncpy() Copy from one string to another

strcat() strncat() Concatenate one string to another

sprintf() snprintf() Write data to a string

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 20

Safe Programming and Safe Libraries

 Early language designers hoped/assumed that programmers

would exercise care and foresight when writing code

 C allows for higher performance and space efficiency than Java

 But, programmers are not generally careful or thoughtful

 Standard libraries allow for unsafe actions (like previous slide)

 Create alternatives to unsafe functions/entire libraries

 Requires rewriting/updating the source code

 Create safe versions of type libraries (like strings)

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 21

Making a “Safe” C (or any language)

 Many have tried, many have failed

 There are literally dozens of “safe” C attempts out there

 Protip: don’t pick this for a dissertation topic

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 22

Exploiting Stack Overflows

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 23

Overwriting Return Addresses

 Want to control where the program “returns”

to after a function is completed

 If we can force it to return to somewhere in memory where

malicious code, then it will execute that code instead

 Accomplish this by overwriting the actual return address

with one of our own making

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 24

Shellcode

 The malicious code that we want to be run

 In our example, will be causing a shell to open

 Ideally, with root privileges

 Will let us be a “super user”

 Remove and edit files, view all files and directories,

make changes to permissions of other files

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 25

NOP Sleds

 Difficult to jump exactly to the start of the shellcode

 “NOP” means “no operation”

 When the program sees a NOP, it moves on to the next

instruction

 Create a sequence of NOPs

 Jumping anywhere inside it will allow you

to “sled” to your actual shellcode

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 26

Daily Security Tidbit

 June 2007, Lifelock used CEO Todd Davis’s social security

number prominently in many of its advertisements

 Meant to show how good the company was at preventing identity theft

 His identity was stolen 13 times within the year

 Most of it was small charges ($100 - $500), probably done by people

showing off that it could be done

 Lifelock was fined by the FTC for deceptive advertising

Information taken from https://www.wired.com/2010/05/lifelock-identity-theft/

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 27

Announcements

 Sign up for Piazza if you haven’t already, as assignments will

be starting soon

